
Making Extensions 
Extensions allow you to modify existing SI features or add new ones with minimal impact on other features 
and with an ability to preserve the changes when SI updates are loaded. There are many points in the 
code that look to see if a version of a file exists in an active extension. In each case, if found, the version 
of the file in the extension will be used in place of the file in the library. A list of what files can be replaced 
exists in the order of access at the end of this document. 

The following examples assume that you know how to write PHP and Smarty template code. You don’t 
have to be an expert. Much of what you need to know already exists in these files and can guide you in 
adding your changes. 

The following examples should help you understand the basics of developing an extension. 

Example – Adding invoice total to the Recurrence management list 

The first step in creating an extension is to decide on the extension name. For this example, we will use 
“cronInvoiceTotal”. Now we can add a directory of this name in the “extensions” directory. This means 
we have path, “extensions\cronInvoiceTotal”. 

In this directory we create the DESCRIPTION file. In it we store a short description of the extension that 
will be displayed on the Extensions screen. Add the line, “Recurrence Invoice Total”, to this file. 

We also create a README file that contains the full description of the extension and if necessary, 
instructions on loading and using the extension. 

Next look at the standard Recurrence management list screen (select Money tab and then the Recurrence 
menu option, you will see the following in the browser address line: 

https://yourSIdomain/index.php?module=cron&view=manage 

From this line we see the following pertinent pieces of information: 

1) module=cron --- This identifies two directories. The directory containing the PHP file used to 
access data for the screen, and the directory containing the Smarty template file use to render 
the screen in your browser. 
 
In this example, the PHP file exists in the modules/cron directory and the Smarty template file 
exists in the templates/default/cron directory. Note that all template directories are in the 
templates/default directory. 
 

2) view=manage --- This identifies both the name of the PHP file and template file. 
 
Combining the information above with the view information, we know that the 
modules/cron/manage.php file is used to access information to be displayed, and the 
templates/default/cron/manage.tpl file is used to build the information displayed in your 
browser. 

For this example, we need to modify both files to add the invoice total to the screen and we can add these 
directories and files to the extension directory. So, we have the following paths: 



Making Extensions 
extensions\cronInvoiceTotal\modules\cron\manage.php 

and 

extensions\cronInvoiceTotal\templates\default\cron\manage.tpl 

Copy the content of the standard cron manage.php and manage.tpl files to the files in these directories. 
These are the files you will modify. 

In the manage.php file we have the line: 

$crons = Crons::manageTableInfo(); 

This line is accessing the information to display on the screen. We need to add the invoice total amount 
to each record in the array of records now in the $crons variable. 

If you look at the logic in the manageTableInfo() function of the Inc\Claz\Crons class, you will see code 
that stores information in the $tableRows array. Note that each entry in the $tableRows array is itself an 
array representing each line that will be displayed on the Recurrence screen. Also, there is an entry in 
each entry of the array identified by the key, “invoiceId.” 

Now it gets tricky as the value we need to access the invoice record is stored as the 
“id={$row[‘invoice_id]}” portion of the hyperlink that is  shown as “invoiceId.” Note that there is a 
different value stored as the link text. This is the “index_id.” The reason these are different is that the 
“invoice_id” is the “id” field of the invoice record which uniquely identifies a record in the “si_invoices” 
table. But since different, possibly overlapping index numbering schemes can be used, the “index_id” that 
you see displayed on the screen might not uniquely identify the invoice record. 

Because the “invoice_id” value is embedded in the hyperlink, we need to use code to find and remove it. 
The best method is to use the preg_replace() function. The code to extract the id is: 

$pattern = “/^.*href.*id=(\d+)'>\d+<\/a>$/”; 
$id = preg_replace($pattern, $1); 

Now that we have the ID, we can get the invoice record as follows: 

$rec = Invoice::getOne($id); 

Note that you will need to as the line, “use Inc\Claz\Invoice”, to the top of the file following the other 
“use” lines. 

Now we must make a new array for $crons that has entries with the “total” in them. Because we want to 
format the amount properly on the screen, we also include the “locale” and “currency_code”  fields. The 
following shows the code to accomplish this for the modules/cron/manage.php file sans comments: 

<?php 
 
use Inc\Claz\Cron; 
use Inc\Claz\Invoice; 
use Inc\Claz\Util; 
 
global $pdoDb, $smarty; 



Making Extensions 
 
Util::directAccessAllowed(); 
 
$crons = Cron::manageTableInfo(); 
$newCrons = []; 
foreach ($crons as $cron) { 
    $subject = $cron['invoiceId']; 
    $pattern = '/^.*href.*id=(\d+)'>\d+<\/a>$/'; 
    $id = preg_replace($pattern, "$1", $subject); 
 
    $rec = Invoice::getOne($id); 
    $cron['total'] = $rec['total']; 
 
    $subject = $rec['locale']; 
    $pattern = '/^(.*)_(.*)$/'; 
    $cron['locale'] = preg_replace($pattern,'$1-$2',$subject); 
    $cron['currency_code'] = $rec['currency_code']; 
 
    $newCrons[] = $cron; 
} 
 
$data = json_encode(['data' => $newCrons]); 
if (file_put_contents("public/data.json", $data) === false) { 
    exit("Unable to create public/data.json file"); 
} 
 
$smarty->assign("numberOfRows", count($newCrons)); 
 
$smarty->assign('pageActive', 'cron'); 
$smarty->assign('activeTab', '#money'); 

 

Not the logic for altering the “locale” field using the “preg_replace” function. This was copied from the 
Invoice::manageTable() function that retrieves the data to be shown on the Invoices management screen. 
The basic result is the underscore in the locale is changed to a dash, ex: en_US becomes en-US. This is 
required by the DataTables render function. 

The net effect of this code is that a field named “total” now exists for each recurrence record and can be 
added to the Recurrence screen.  

The next step is to add the total field to the 
“extensions\cronInvoiceTotal\templates\default\cron\manage.tpl” file. Fortunately, this is less 
complex than what we did to the manage.php file. 

First, we need to decide where the total field to be placed. For this example, we will add it as the last field 
on the screen.  



Making Extensions 
To do this, we need to add a heading for the field. Checking the lang/en_US/lang.php1 file for the word 
“Total”. It is in the $LANG[‘totalUc’] variable. Adding it to the heading list you will yield the following: 

<th>{$LANG.customerUc}</th> 

<th class="align__text-center">{$LANG.totalUc}</th> 

Now we add the actual data field that will be displayed. Looking further down in this file, you find the 
DataTables section. Continuing down, you find the “columns” list. The total field we added to the 
$newCrons table is now added to this list. Iif you just add the field, you will get the total but it won’t be 
formatted as amount with proper monetary sign and decimal places. So we are going to go the invoice 
management screen and copy the total field logic from there. Doing this we have: 

{ "data": "customerName"}, 

{ 
"data": "total", 
"render": function (data, type, row) { 

let formatter = new Intl.NumberFormat(row['locale'], { 
'style': 'currency', 
'currency': row['currency_code'] 

}); 
return formatter.format(data); 

} 
} 

Now we must position the field. This screen uses specified field sizes. In this example we will reduce the 
size of the customerName field from 30% to 20%. This allows us to use 10% as the size for the total field. 
Also, we want to right justify this field by setting the className to ’dt-body-right’. 

 Making this change we alter the size of the customerName field an place a comma, (‘,’) following it. Then 
add the total field. Here is the code showing this change: 

{ "targets": 7, "width": "20%" }, 

{ "targets": 8, "width": "10%", “className”: ‘dt-body-right’ } 

Whew!!! That’s all. Now we are ready to enable our extension and put it into use. Log in to SI and select 
the Settings tab and the Customize menu option. On the screen that comes up, select the Extensions 
menu option. 

On the Extensions screen, you now see a line for the cronInvoiceTotal extension. At the right of the 
cronInvoiceTotal extension line there is an unlit lightbulb and a non-green leaf in the status field. The leaf 
turns green when you have registered the extension. And the light bulb turns yellow when you have 
enabled to module. 

On the left there is a green leaf with a white plus sign on the lower right corner. The white plus sign means 
that you can click this icon to register the module. After you click this icon, you will be on the registration 

                                                           
1 The lang/en_US file is used as it contains all the values that can be used. Some of these may not have been 
translated into your local language file so by default, that value comes from the lang/en_US/lang.php file. 



Making Extensions 
screen. Note the title say’s you are “About to register: cronInvoiceTotal”. Simply select the Save button 
to register the module. 

You are returned to the Extension management screen and the leaf on the right side of the 
cronInvoiceTotal line is green. This means that the module is registered and can be turned on. 

On the left side of the screen there is now a light switch icon. Also note that the previously white plus sign 
on the leaf is now red. The red means that you can select the icon to unregister the module. 

At this point, we want to enable the module. So we select the light switch icon and the light bulb on the 
left will turn yellow showing the module is enabled. 

To see the module in action, select the Money tab and select the Recurrence menu option. Note that the 
Total column now appears and contains the right-justified, properly formatted total amount for this 
invoice. You can verify this by select the link to the invoice when is the Invoice ID shown for the invoice. 

You can see the Total for the invoice in the Invoice section of the Financial status box on the bottom left 
of the screen. 

If you decide that you no longer want to use this module, you simply go to the Extensions screen and 
select the Light Switch icon. This causes the Light Bulb icon on the right to turn off (no longer yellow). Go 
to the Recurrence screen and the Total field is no longer displayed. 

Locations in code where extension files looked for / loaded 

As mentioned, I stated that there are many locations where an extension can replace the standard code 
SI uses. The following list details the files that can be replaced in the order that SI accesses the files: 

extensions/$extName/include/smarty_plugins 
Allows user to replace/add to 
standard smarty plugins with 
their own. 

extensions/$extName/Inc/Claz/" . $extName . "acl.php"; 

For ACL (Access Control List) in an 
extension, simple place any of 
the following commands in the 
acl.php file for the extension. 
Note, see Inc/Claz/SiAcl.php for 
examples of each of the 
following: 

acl->addRole(role) 
acl->addResource(resource) 
acl->allow(role, permission, 
resource) 
acl->deny(role, permission, 
resource) 

extensions/$extName/include/init.php 

This follows immediately after 
the standard init.php file is 
processed. It doesn’t replace it 
but supplements it. 



Making Extensions 

extensions/$extName/modules/$module/$view.php 

If this is an API, XML or AJAX 
request, this is where the 
modules php file to access is set.  
Note that the $module and 
$view values are extracted from 
the browser address line. At this 
point, modules.php is executed 
to render the screen and no 
further processing occurs. 

extensions/$extName/include/js/$extName.jquery.ext.js 
Adds user jQuery files to the html 
screen. Note that the jQuery file 
must be named: jquey.ext.js 

extensions/$extName/templates/default/hooks.tpl 

Allows extension level hooks to 
be accessed. Note that hooks are 
a topic of their own. So, use this 
only if you understand their 
function. 

extensions/$extName/templates/default/header.tpl 
Allows the extension to use its 
own header.tpl file. This replaces 
the default file. 

extensions/$extName/modules/$module/$view.php 

Note that this extension occurs 
above. However there it is 
limited to API, XML or AJAX 
requests. This instance is where it 
is provided for all other (aka 
standard) requests. 

This is where your extension 
modules file is loaded unless it is 
for the reports/index.php or 
system_defaults/edit.php file. 
These special cases do not 
replace the php file. Rather they 
use logic to insert code into  
modules/system_defaults/edit.p
hp file is a special case explained 
in Example 2 above. 

extensions/$extName/templates/default/reports/$view.php 
This is for reports module and 
either export.php or email.php 
files only. 

extensions/$extName/include/js/$extName.post_load.jquery.ext.
js.tpl 

This is a jQuery script loaded 
after the module php has been 
loaded. 



Making Extensions 
extensions/$extName/templates/default/main.tpl This replaces the standard 

templates/default/main.tpl file. 

extensions/$extName/templates/default/$module/$view.tpl 

This is where the extension view 
file is loaded. 

Note there is special processing 
for a module/view settings if 
reports/index or 
system_defaults/manage. 

extensions/$extName/templates/default/footer.tpl 
This replaces the standard 
templates/default/footer.tpl 
file. 

 

 


